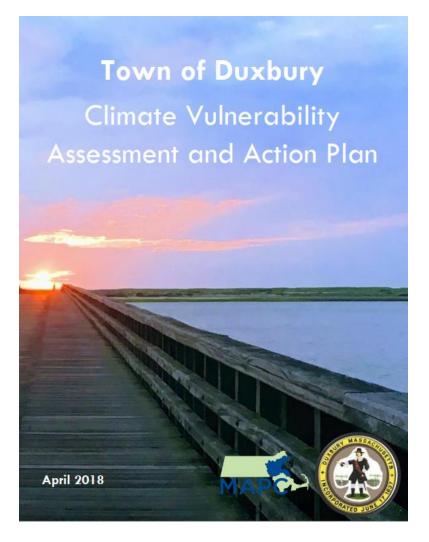


Town of Duxbury Climate Change Vulnerability Assessment and Adaptation Planning


MVP Action Grant – Final Public Meeting

Town of Duxbury Primary Contact: Valerie Massard Town Planner Town of Duxbury Project Manager: Joseph Famely Climate & Sustainability Team Lead Woods Hole Group

Project Team: Kirk Bosma Senior Coastal Engineer Woods Hole Group

Duxbury Climate Change Planning

Climate Vulnerability Assessment and Action Plan (April 2018)

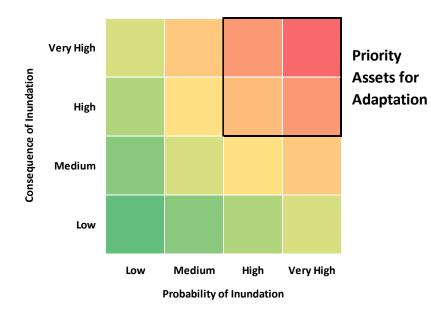
• Hazards:

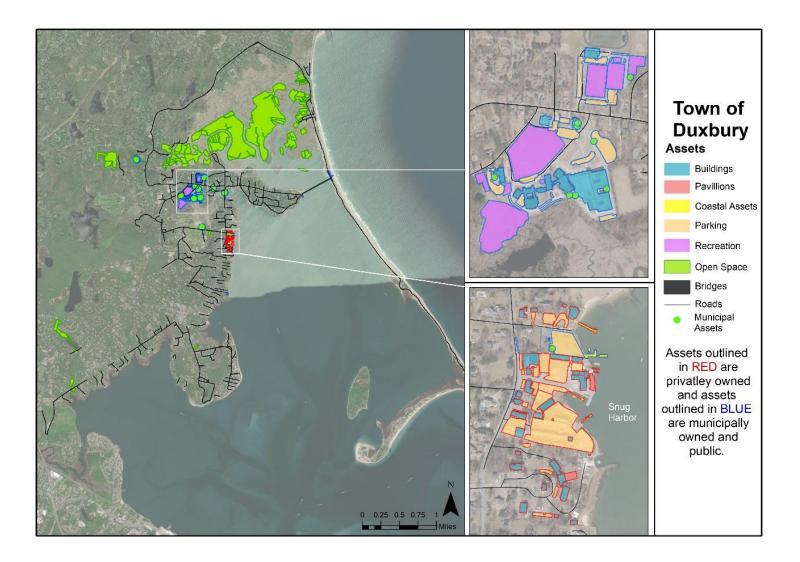
- heat, drought, sea level rise, storm surge, precipitation
- Actions:
 - Engage in community adaptation planning process for the three (3) most vulnerable areas: Gurnet Road, Snug Harbor, and the Blue Fish River.
 - Collaborate with stakeholders in the most vulnerable areas to identify potential zoning, regulatory, incentive mitigation and cooperative approaches to deal with sea level rise.
 - Create a working group to inform design standards for raising roads and consider implications for commercial, industrial, and residential building egress
- MVP Certified Community

Current Vulnerability to Coastal Flooding

Impetus for MVP Action Grant

Source: @Dux_HM


છું


Source: Google

Vulnerability Assessment and Adaptation Planning *Project Approach*

- Phase I
 - SLR / Storm Surge Projections
 - Scenario Development
 - Gather asset data
 - Determine Asset Critical Elevations
- Phase II
 - Score Asset Inundation Consequence
 - Map Inundation Probability
 - Map Natural Resource Changes
 - Vulnerability/Risk Assessment
 - Risk = Probability * Consequence
- Phase III
 - Prioritize High Risk Assets
 - Adaptation Strategies for Priority Assets and Natural Resources

Vulnerability Assessment and Adaptation Planning *Phase I: Gather Asset Data*

Vulnerability Assessment and Adaptation Planning *Phase I: Gather Asset Data*

✓ Municipal Infrastructure

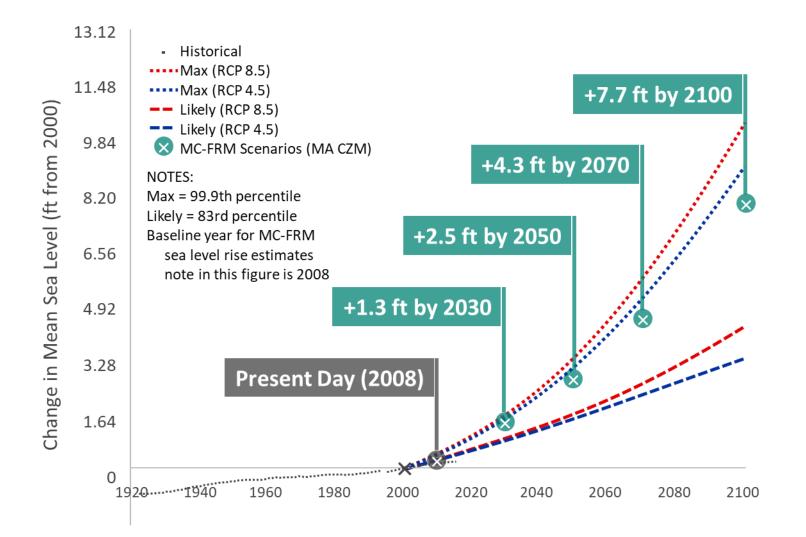
- Public roads (320 segments) and bridges (8)
- Municipal buildings (11)
- Municipal shared septic systems, generators, fuel tanks, and A/C units (14)
- Municipal parking lots (26)
- Municipal pier, dune walkover, and year-round floats (4)
- Municipal open space (71), playing fields/courts and playgrounds (9)

✓ Snug Harbor Commercial Infrastructure

- Buildings (34)
- Parking lots (20)
- Piers, year-round gangways and floats (6)
- Fuel tanks, A/C units, grease traps (3)
- pavilions (2)

Asset Inundation Consequence Scoring Municipal Assets

	Dire	ect Impacts		Indirect Impacts				
				Public Safety		Public Health		
	Service Loss	Service Loss	Cost of	& Emergency	Economic	&		
Rating	Extent	Duration	Damage	Services	Activity	Environment		
4	Town	>30 d	>\$10M	Very High	Very High	Very High		
3	Neighborhoods	15-30 d	\$1M-\$10M	High	High	High		
2	Neighborhood	8-14 d	\$100K-\$1M	Moderate	Moderate	Moderate		
1	Locality	1-7 d	\$10K-\$100K	Low	Low	Low		
0	Property	<1 d	<\$10K	None	None	None		

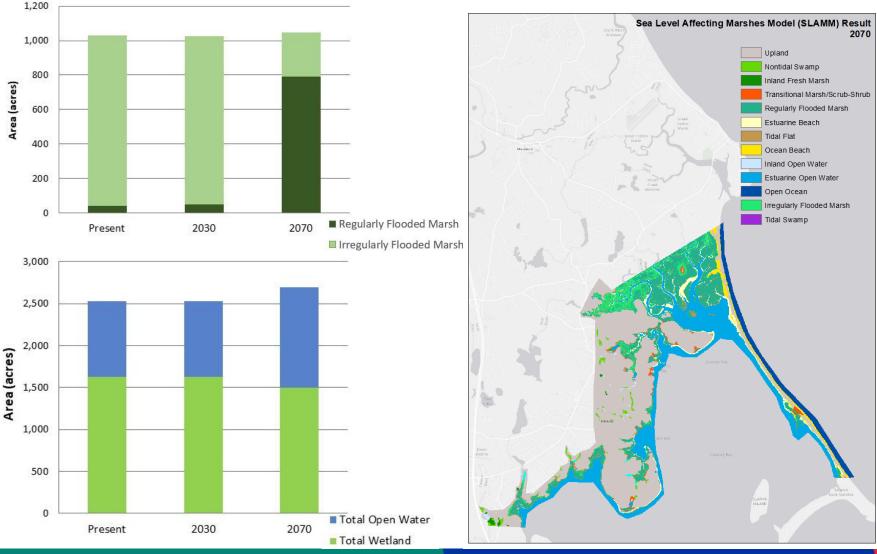

Asset Inundation Consequence Scoring

Snug Harbor Private Assets

	Dire	ct Impacts		Indirect Impacts				
	Service Loss	Service Loss	Cost of	Economic	Marketing &			
Rating	Extent	Duration	Damage	Activity	Outreach	Planning		
4	Snug Harbor & Beyond	>30 d	>\$10M	Severe	Severe	Severe		
3	Organization	15-30 d	\$1M-\$10M	High	High	High		
2	Facility	8-14 d	\$150K-\$1M	Moderate	Moderate	Moderate		
1	System	1-7 d	\$10K-\$150K	Low	Low	Low		
0	Component	<1 d	<\$10K	None	None	None		

Sea Level Rise

Probabilistic SLR Projections (Commonwealth of MA)

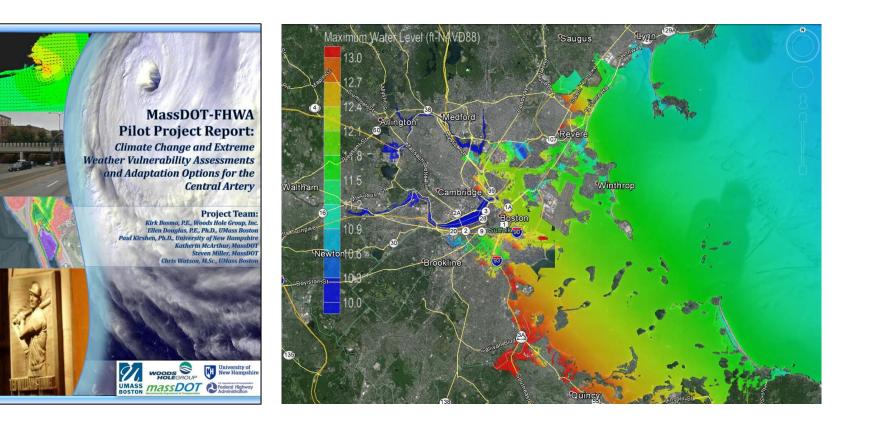

Sea Level Rise

Probabilistic MSL elevation projections (Commonwealth of MA) in feet NAVD88

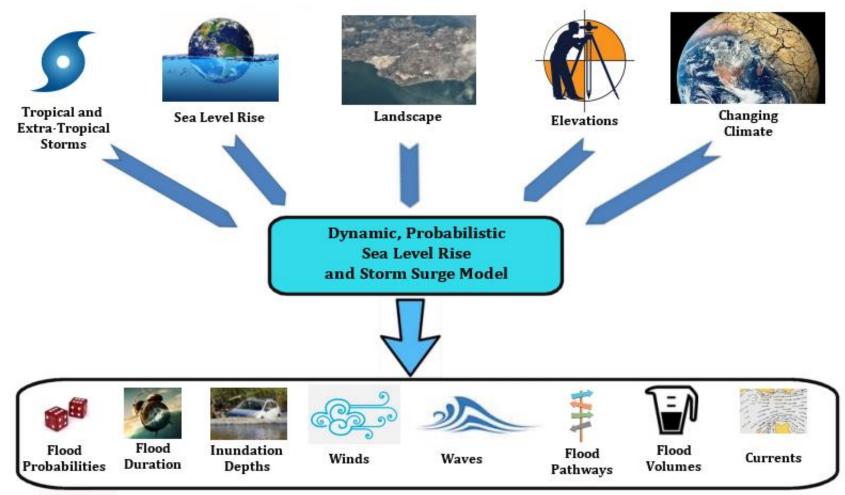
Scenario	Cross-walked probabilistic projections	2030	2050	2070	2100				
	Unlikely to exceed (83%) under RCP8.5	0.7	1.4	2.3	4.0				
Intermediate	Extremely unlikely to exceed (95%) under RCP	4.5							
	 About as likely as not to exceed (50%) under RCP 4.5 when accounting for possible ice sheet instabilities 								
	Extremely unlikely to exceed (95%) under RCP 8.5	0.8	1.7	2.9	5.0				
Intermediate- High	 Unlikely to exceed (83%) under RCP 4.5 when accounting for possible ice sheet instabilities 								
	 About as likely as not to exceed (50%) under RCP 8.5 when accounting for possible ice sheet instabilities 								
	Extremely unlikely to exceed (99.5%) under RCP 8.5	1.2	2.4	4.2	7.6				
High	 Unlikely to exceed (83%) under RCP 8.5 when accounting for possible ice sheet instabilities 								
	 Extremely unlikely to exceed (95%) under RCP ice sheet instabilities 	94.5 whe	n account	ting for p	ossible				
Extreme (Maximum	Exceptionally unlikely to exceed (99.9%) under RCP 8.5	1.4	3.1	5.4	10.2				
, physically plausible)	 Extremely unlikely to exceed (95%) under RCP8.5 when accounting for possible ice sheet instabilities 								
2008 (1999-20	17 epoch) mean sea level at Boston tide gage w	as -0.09	feet (NA	VD88)					

Sea Level Rise and Habitat Change

Projected conversion of ~75% of existing high marsh to low marsh Projected 293 acre increase of open water (loss of wetlands and uplands)

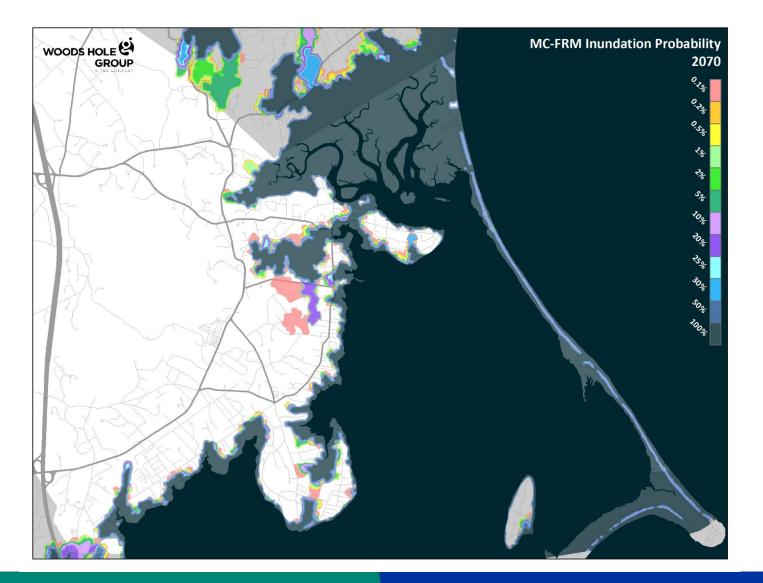

Local Tidal Datum Projections

	Present	2030	2050	2070
MHW	4.8	6.1	7.4	9.3
MHHW	5.2	6.5	7.8	9.7

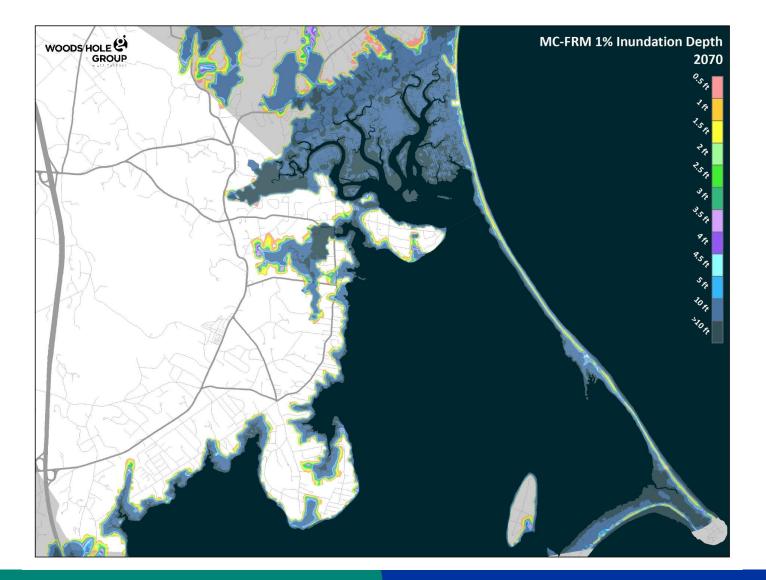

MHHW Projections for Snug Harbor

The case for hydrodynamic modeling

Massachusetts Coast Flood Risk Model (MC-FRM)

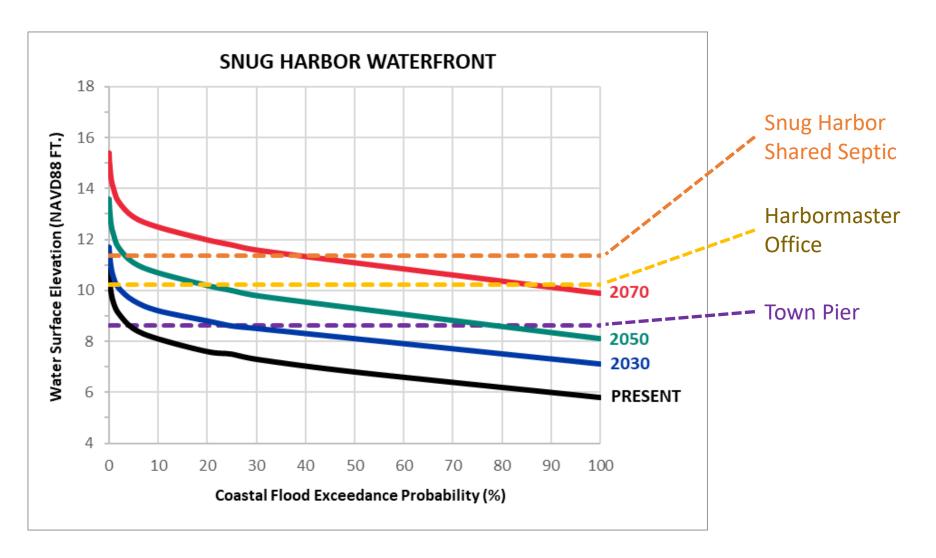


• Includes relevant physical processes (tides, storm surge, wind, waves, wave setup, river discharge, sea level rise, future climate scenarios)


MC-FRM Mesh in Duxbury

MC-FRM Results: Coastal Flood Exceedance Probability

MC-FRM Results: Inundation Depth at 1% CFEP



MC-FRM Town-wide Exposure Screening Profile

Potential vulnerability and exposure of	Present Day		2030		2050		2070	
structures and roadways in Duxbury	Quantity	Percent	Quantity	Percent	Quantity	Percent	Quantity	Percent
Structures (Total 7341)								
Nuisance Flooding (MHHW)	7	0.1%	20	0.3%	94	1.3%	274	3.7%
Storm Surge (10% Chance)	354	4.8%	526	7.2%	587	8.0%	715	9.7%
Storm Surge (1% Chance)	540	7.4%	602	8.2%	711	9.7%	807	11.0%
Roadways (Total 183 miles)								
Nuisance Flooding (MHHW)	0.39	0.2%	0.65	0.4%	2.73	1.5%	6.35	3.5%
Storm Surge (10% Chance)	7.31	4.0%	9.79	5.3%	11.1	6.1%	13.21	7.2%
Storm Surge (1% Chance)	10.13	5.5%	11.31	6.2%	13.3	7.3%	14.98	8.2%

Vulnerability Assessment

Probability of Exceeding Critical Elevation

Vulnerability/Risk Assessment Results – Assets Asset Profiles – Town and Snug Harbor

Harrison Bridge Asset Type: Bridge Critical Elevation (CE): 5.53 FT. NAVD88 Threshold Description: Low chord elevation; Road surface 9.36 FT. NAVD88

Climate Vulnerability Assessment - Asset Profile

Probability of Exceedance Summary Table

	Present		20	30	20	70
Probability	Flood Elevation	Depth Over CE	Flood Elevation	Depth Over CE	Flood Elevation	Depth Over CE
%	FT. NAVD88	FT.	FT. NAVD88	FT.	FT. NAVD88	FT.
0.1	10.9	5.37	11.9	6.37	15.5	9.97
0.2	10.5	4.97	11.5	5.97	15.1	9.57
0.5	10	4.47	11	5.47	14.5	8.97
1	9.6	4.07	10.6	5.07	14.1	8.57
2	9.2	3.67	10.3	4.77	13.7	8.17
5	8.7	3.17	9.8	4.27	13.1	7.57
10	8.3	2.77	9.4	3.87	12.6	7.07
20	7.8	2.27	8.9	3.37	12.1	6.57
25	7.6	2.07	8.8	3.27	11.9	6.37
30	7.5	1.97	8.7	3.17	11.8	6.27
50	7	1.47	8.2	2.67	11.3	5.77
100	5.9	0.37	7.2	1.67	10.1	4.57

Consequence of Exceedance

		Direct Impact	3		Indirect Impa	cts		
	Service Loss Extent	Service Loss Duration	Cost of Damage	Safety & Emergency Services	Economic Activity	Public Health & Environment		Consequence Score
Scores	3	4	2	3	4	3	19	79

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	100	79	7900	1/35
2030	100	79	7900	1/35
2070	100	79	7900	3/35

Joe's Building Asset Type: Building Critical Elevation (CE): 7.94 FT. NAVD88 Threshold Description: Ground - from Iidar

Probability of Exceedance Summary Table

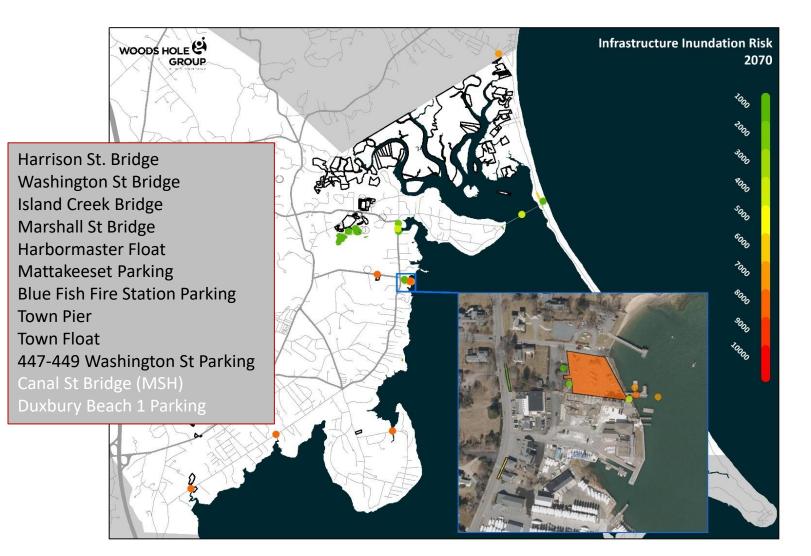
	Present		20	30	20	70
Probability	Flood Elevation	Depth Over CE	Flood Elevation	Depth Over CE	Flood Elevation	Depth Over CE
%	FT: NAVD88	FT.	FT. NAVD88	FT.	FT. NAVD88	FT.
0.1	10.8	2.86	11.7	3.76	15.4	7.46
0.2	10.4	2.46	11.4	3.46	15	7.06
0.5	9.9	1.96	10.9	2.96	14.4	6.46
1	9.5	1.56	10.5	2.56	14	6.06
2	9.1	1.16	10.1	2.16	13.5	5.56
5	8.5	0.56	9.6	1.66	12.9	4.96
10	8.1	0.16	9.2	1.26	12.5	4.56
20	7.6		8.8	0.86	12	4.06
25	7.5		8.6	0.66	11.8	3.86
30	7.3		8.5	0.56	11.6	3.66
50	6.8	12	8.1	0.16	11.1	3.16
100	5.8		7.1	-	9.9	1.96

Consequence of Exceedance

		Direct Impacts		Org	anizational Imp	acts		
	Service Loss Extent	Service Loss Duration	Cost of Damage	Economic Activity	Marketing & Outreach	Planning	Sum	Consequence Score
Scores	2	1	1	2	1	4	11	46

Risk of Exceedance

Time horizon	Probability of Exceedance	Consequence Score	Risk Score	Risk Rank
Present	10	46	460	1/14
2030	50	46	2300	1/14
2070	100	46	4600	2/14


WOODS HOLE

WOODSHOLEGROUP.COM

Municipal Risk Assessment Results – Assets (Top 25) Probability * Consequence = Risk

			се	Pro	bability (%	6)	Risk		
Asset Type	Asset Name	Critical Elevation (FT. NAVD88)	Consequence	Present	2030	2070	Present	2030	2070
Bridges	Harrison St Bridge	5.53	79	100	100	100	7900	7900	7900
Bridges	Washington St Bridge	7.48	79	30	50	100	2370	3950	7900
Bridges	Island Creek Bridge	7.01	75	30	50	100	2250	3750	7500
Bridges	Marshall St Bridge	6.83	71	30	100	100	2130	7100	7100
Coastal	Harbormaster Float	6.88	67	30	100	100	2000	6667	6667
Parking	Mattakeeset	8.02	79	10	50	100	792	3958	7917
Parking	Blue Fish Fire Station	8.53	33	5	30	100	167	1000	3333
Coastal	Town Pier	8.62	79	2	25	100	158	1979	7917
Coastal	Town Float	8.62	67	2	25	100	133	1667	6667
Parking	447-449 Washington Street	8.54	54	2	25	100	108	1354	5417
Bridges	Canal St Bridge (MSH)	9.84	67	1	2	100	67	134	6700
Parking	Duxbury Beach 1	9.70	58	0.5	5	100	29	292	5833
Buildings	Harbormaster Office	10.21	71	0.2	1	50	14	71	3550
Assets	Blue Fish Shared Septic Pump	10.34	38	0.2	1	50	8	37	1875
Bridges	Powder Point Bridge	11.14	79	0	0.2	50	0	16	3950
Bridges	Beach St Bridge (MSH)	9.76	67	0	1	50	0	67	3350
Parking	Duxbury Beach 2	10.82	50	0	0.5	50	0	25	2500
Assets	Snug Harbor Shared Septic Pump	11.37	50	0	0.2	30	0	10	1500
Buildings	Blue Fish River Fire Station	11.78	33	0	0.1	30	0	3	990
Parking	Alden Elementary School 2	11.01	17	0	0.2	50	0	3	833
Parking	Duxbury Middle/High School 1	11.58	17	0	0.1	30	0	2	500
Parking	Alden Elementary School 3	11.92	17	0	0	20	0	0	333
Parking	479 Washington Street	12.67	54	0	0	5	0	0	271
Coastal	Duxbury Beach Walkover	12.88	50	0	0	2	0	0	100
Buildings	Alden Elementary School	14.03	75	0	0	1	0	0	75

Vulnerability/Risk Assessment Results – Town Assets Probability * Consequence = Risk

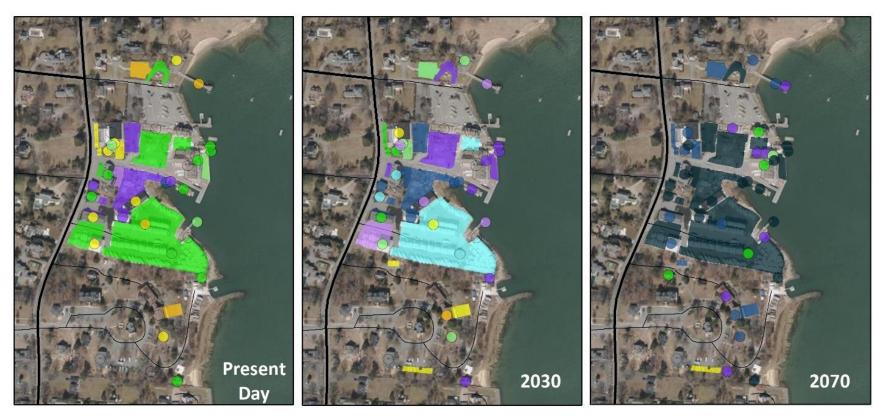
WOODSHOLEGROUP.COM

High Risk Town Assets at Mattakeeset 2018 Winter Storm Riley

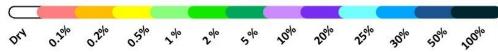
Source: MAPC Snug Harbor Report

e

Vulnerability/Risk Assessment Results – Roads Probability * Consequence = Risk



High Risk Town Roads


February 24, 2021 High Tide (10'0" at 08:51) Later that month, high tide was 1'8" higher

Snug Harbor Vulnerability Assessment *Probability of Inundation*

Probability of Inundation- Snug Harbor

WOODSHOLEGROUP.COM

Snug Harbor Risk Assessment

Probability * Consequence = Risk

Vulnerability

Rank	Asset Name	Owner
1	Gas Shed Building	DBMS
2	Guzzle Gangway	DBMS
3	Mattakeeset Parking Lot	Sweetsers
4	Joe's Building	Bayside
5	Bayside Marine 1 Parking Lot	Bayside
6	Talbots Rear Parking Lot	Bayside
7	Bayside Alley Parking Lot	Bayside
8	Duxbury Bay Maritime School 3 Parking Lot	DBMS
9	Pumphouse Building	ICO
10	Talbots Building	Bayside
11	Boathouse Building	ICO
12	Smith Building- Fire Sprinkler Room	DBMS
13	Guzzle Float	DBMS
14	Bayside Marine 3 Parking Lot	Bayside
15	Duxbury Yacht Club 3	DYC

Risk

Bayside

- 1. Joe's Building
- 2. Bayside Marine 1 Parking
- 3. Talbots Rear Parking
- 4. Bayside Alley Parking
- 5. Talbots Building

DBMS

- 1. DBMS Gas Shed
- 2. Guzzle Gangway
- 3. DBMS 3 Parking
- 4. Smith Building-Fire Sprinkler Room
- 5. Guzzle Float

DYC

- 1. Duxbury Yacht Club 3 Parking
- 2. Yacht Club Clubhouse
- 3. Yacht Club Pier
- 4. Duxbury Yacht Club 1 Parking
- 5. Yacht Club Pier Hut

Island Creek

- 1. Pumphouse
- 2. Boathouse
- 3. Hatchery
- 4. ICO Patio
- 5. Admin Building

Sweetser's

- 1. Mattakeeset Parking
- 2. Chiller AC Units and Crawl Space
- 3. Annex Building
- 4. Washington Parking
- 5. Annex Parking

Phase III: Develop Adaptation Strategies and Public Outreach

- Protection of natural resources
 - Opportunities for restoration and building ecosystem resilience 0
- Recommendations for changes to local policies and regulation to reduce vulnerability and enhance resilience
- Recommendations for adaption strategies ٠
 - Asset/Site-specific with order-of-magnitude cost estimates 0
 - Possible regional solutions (conceptual level designs)

Avoid Identify future 'no-build areas' and

use planning tools to prevent new development in areas at risk now or in future

Continue to use the land but accommodate changes by building on piles, converting agriculture to fish farming or growing flood- or salt-tolerant crops

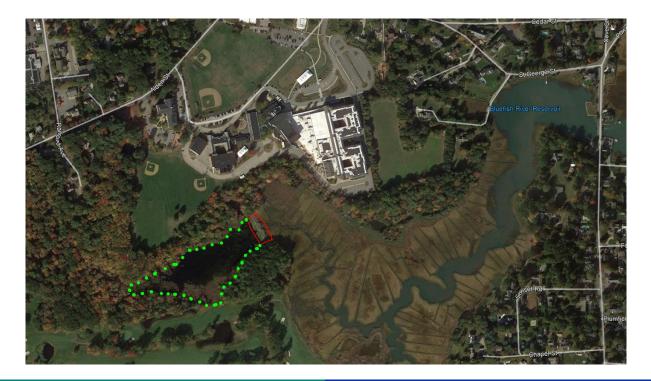
Source: NCCCARF, 2019

Protect

Use hard structures (eg sea walls) or soft solutions (eg dunes and vegetation) to protect land from the sea. May be prohibitively expensive, especially in the long term

\$\$9

\$\$

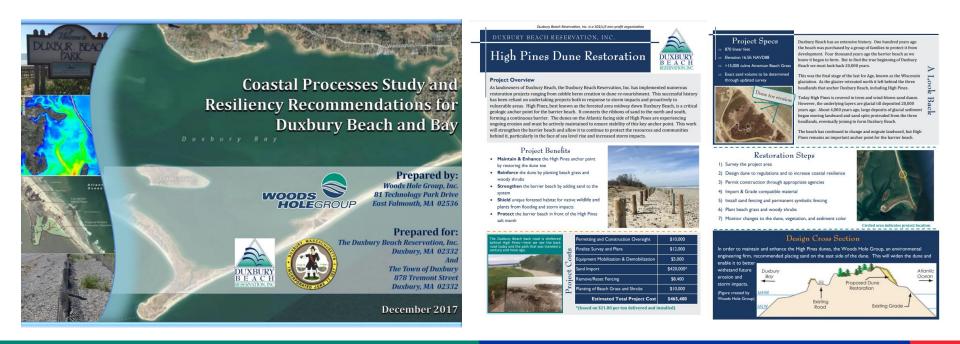

Withdraw, relocate or abandon assets that are at risk; ecosystems are allowed to retreat landward as sea levels rise

WOODSHOLEGROUP COM

Adaptation Strategies – Natural Resources

- Plan for salt marsh migration where possible
 - Bluefish River dam removal
 - Private land: Landing Road vicinity, Goose Point / Allens Pond area, Eagles Nest Point, Snug Harbor, Long Point Marine, Southern lobe of Powder Point neighborhood

Adaptation Strategies – Natural Resources


- Address tidal restrictions at undersized culverts
 - Bay Road culvert near Wirt Way

Adaptation Strategies – Natural Resources

- Support Duxbury Beach Reservation ongoing resiliency efforts
 - FEMA (2007) declared Duxbury Beach ineligible for post-disaster restoration funding because it was deemed a "recreational resource" rather than a "shoreline protection resource"
 - MAPC (2018) recommends "collaborate with and provide financial support to the Duxbury Beach Reservation"

Adaptation Strategies – Zoning Recommendations

- Town of Duxbury Zoning Bylaws (amended through March ATM 2019*)
 - Reference future flood hazards and require consideration in the design and approval of development proposals
 - Update and modify the Flood Hazard Areas Overlay District to account for future coastal flood risk and promote resiliency in future floodplain development
 - Update and modify the Wetlands Protection Overlay District to account for longterm sea level rise and promote ecological adaptation and resiliency

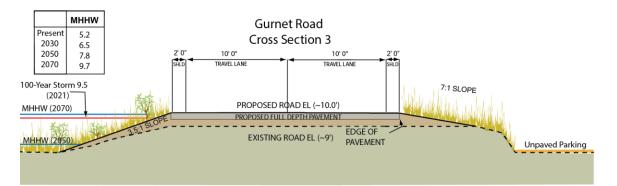
* Note that Town recently amended at 2021 ATM, generally consistent with Massachusetts 2020 Model Floodplain Bylaw. Generally, the above recommendations still apply. Report includes redline for both.

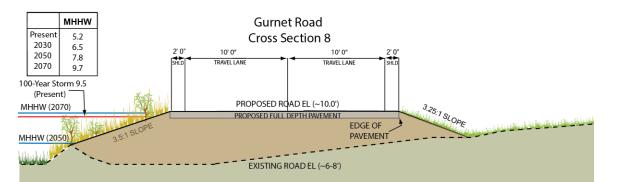
Adaptation Strategies – Subdivision Recommendations

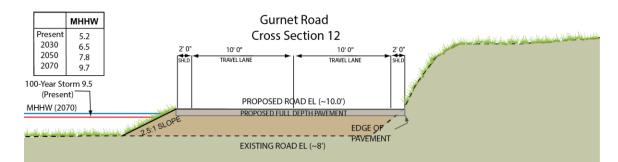
- Town of Duxbury Planning Board Rules and Regulations Governing the Subdivision of Land (March 2005)
 - Reference future flood hazards in the text of the Rules and Regulations and require consideration in the design and approval of subdivision proposals
 - Require applicant to supply information to assist Town staff and board members in their review of subdivision proposals for compliance with flood resistant design standards of the State Building Code and proposed requirements of the FHAOD
 - Modify drainage culvert and outfall design standards to prevent backflow and ensure safe performance under future tidal and coastal storm flooding conditions
 - Modify references to tidal wetland and vegetation protection buffer areas to include areas of potential wetland transition or migration accounting for estimated long-term sea level rise.

Adaptation Strategies – Wetlands Protection Bylaw Recommendations

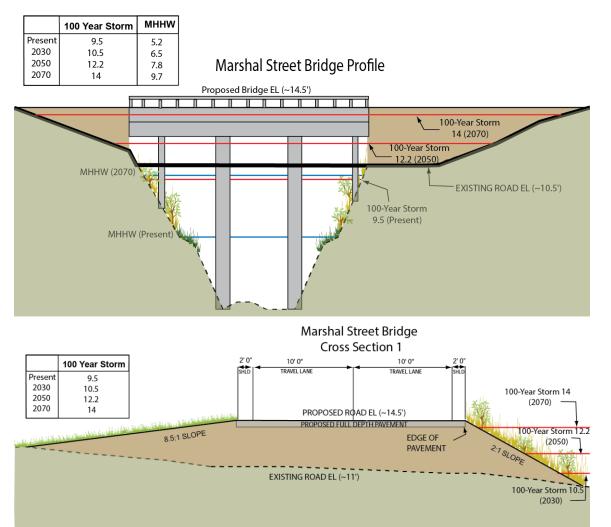
- Town of Duxbury Conservation Commission Wetlands Protection Bylaw, Chapter 9, Wetlands Regulations (adopted February 28, 2017)
 - Include coastal resiliency as a wetland value for Coastal Beach, Coastal Dune, Salt Marsh, and Land Subject to Coastal Storm Flowage
 - Modify definitions for Land Subject to Coastal Storm Flowage to distinguish Coastal A Zones.
 - Add performance standards to Vegetated Wetlands, Salt Marsh, and Land Subject Coastal Storm Flowage to consider the impacts of climate change on projects.
 - Create a subsection of Buffer Zone called Special Transitional Areas that calls for additional considerations to allow resource area migration


Vulnerability Assessment and Adaptation Planning *Adaptation Strategies – Duxbury Priority Assets*



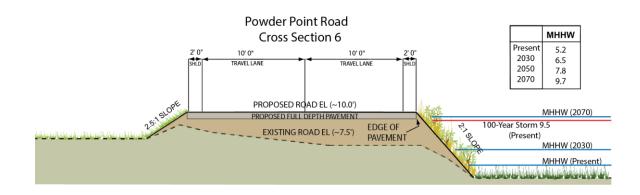


Vulnerability Assessment and Adaptation Planning Adaptation Strategies – Gurnet Road



- 6,240 ft span
- Elevate to 10' NAVD88
 - Daily access
 - Reduced storm impacts
- Green infrastructure side slope treatments
- Preliminary opinion of probable cost:

• ~\$1.2M


Adaptation Strategies – Marshall Street Bridge

- Elevate bridge low chord
 > 10' NAVD88
 - Reduced storm impacts
- Green infrastructure side slope treatments on approaches
- Preliminary opinion of probable cost:
 - ~\$4.5M to ~\$8.7M

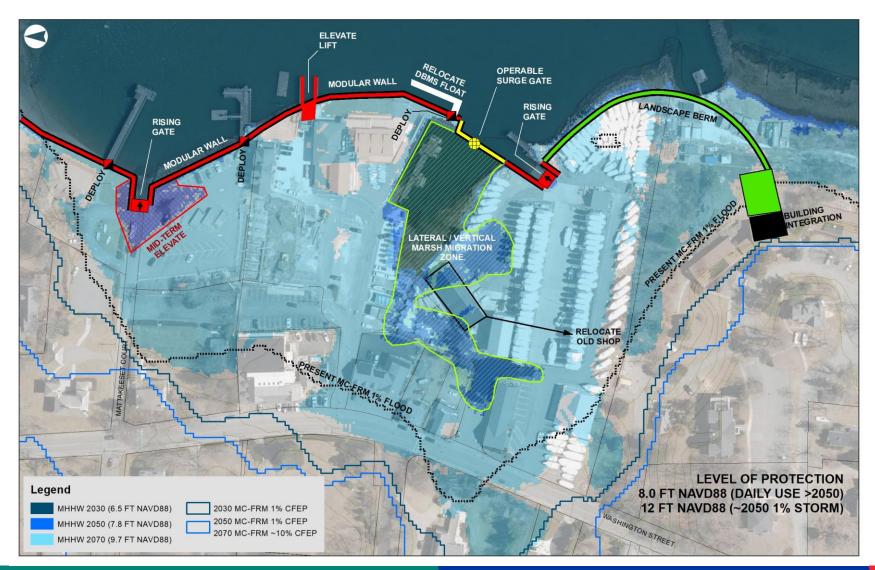
Adaptation Strategies – Powder Point Avenue

2

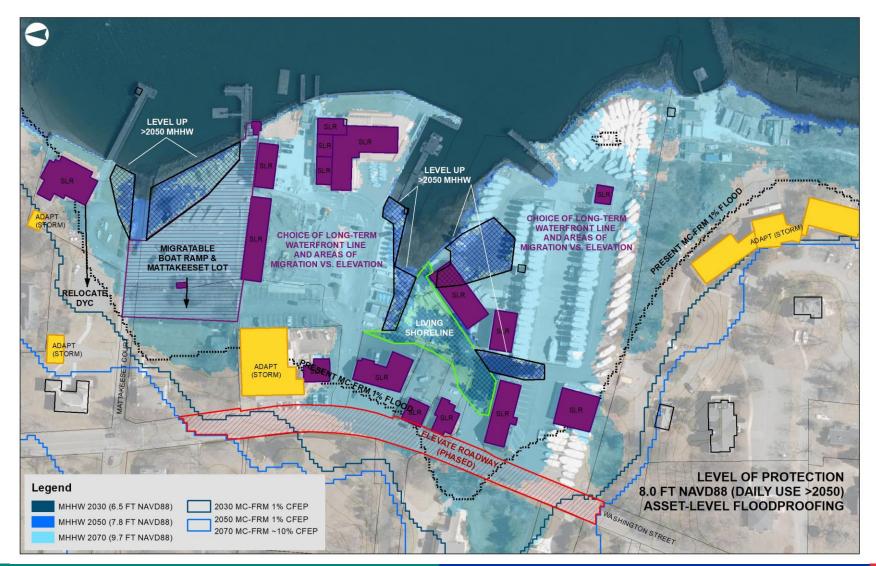
- 1,660 ft span
- Elevate to 10' NAVD88
 - Daily access
 - Reduced storm impacts
- Green infrastructure side slope treatments
- Culvert replacement near Bay Pond Rd
- Preliminary opinion of probable cost:

• ~\$1.0M

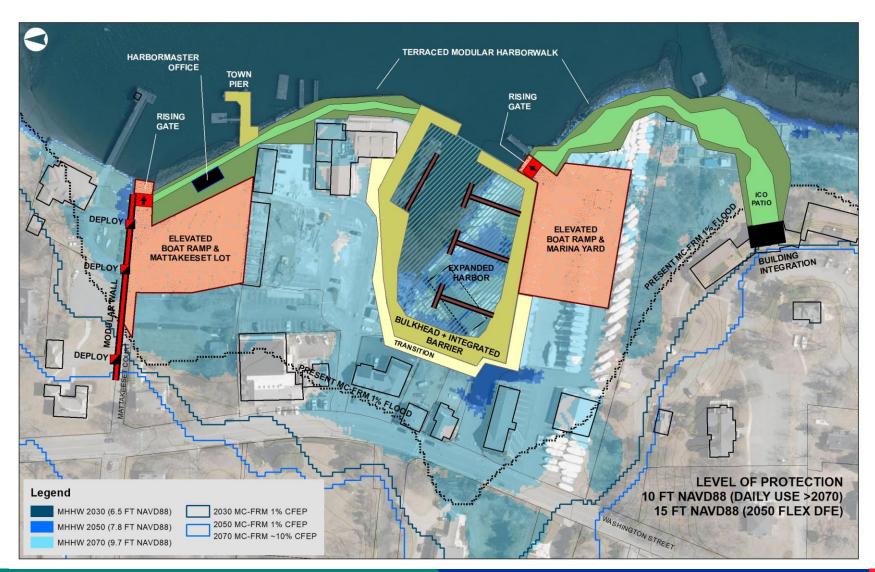
Adaptation Strategies – Snug Harbor Resilient Design Flood Elevations


- Design Flood Elevation (DFE) is the anticipated flood elevation to which an asset should be designed in order to protect the asset from inundation
- Includes stillwater elevation and waves, but not freeboard
- Flexible values can be used if target DFEs are unreasonable to meet given surrounding infrastructure and conditions
- RMAT/EEA developing DFE maps statewide using a statistical approach, so results may differ

			Design Flood Elevation
	Stillwater Elevation	Approximate	(ft. NAVD88)
Scenario	(ft. NAVD88)	Wave Height (ft.)	(<u>no</u> freeboard)
2070 1%	14.0	5.1	16.8
(Target)	14.0	5.1	10.0
2050 1%	10.0	4.0	14.0
(Flexible)	12.2	4.9	14.9


Adaptation Strategies – Snug Harbor Asset Recommendations

- Organization-specific property/asset-level recommendations sent for review
- Assumes no district-wide effort, or at least the need for intermediate adaptation while a district-level solution is pursued
- Generally, strategies include:
 - Building floodproofing such as deployable barriers
 - Raising mechanical equipment, seal or install waterproof systems
 - Raising buildings or interior floors
 - Site grading or modular walls
 - Building relocation
 - For unprotected assets that may flood, be sure to store materials higher than projected surge to reduce possibility of damage and/or release to environment
 - Pull back development to allow marsh migration vs. fill in low-lying operational areas
 - Coastal Flood Operations Plan


Adaptation Strategies – Snug Harbor: Protect the Edge and Curate Marsh Migration

Adaptation Strategies – Snug Harbor: Mid-Century Phased Migration

Vulnerability Assessment and Adaptation Planning *Adaptation Strategies – Snug Harbor: Transform*

Thank you! Questions and Discussion

Final Report available at: https://www.town.duxbury.ma.us/planningdepartment/pages/climate-resiliency-and-sustainable-land-use

Joseph Famely jfamely@woodsholegroup.com 508-495-6220

Source: @Dux_HM

